Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2264428

ABSTRACT

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from the literature and expert knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is modular and easily adjustable to a real-world situation, it is trained and tested on data collected from almost all countries in the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of infections and intervention costs.

2.
PLoS One ; 18(2): e0281556, 2023.
Article in English | MEDLINE | ID: covidwho-2252540

ABSTRACT

OBJECTIVES: This study aimed to investigate the associations between day-to-day work-related stress exposures (i.e., job demands and lack of job control), job strain, and next-day work engagement among office workers in academic settings. Additionally, we assessed the influence of psychological detachment and relaxation on next-day work engagement and tested for interaction effects of these recovery variables on the relationship between work-related stressors and next-day work engagement. METHODS: Office workers from two academic settings in Belgium and Slovenia were recruited. This study is based on an Ecological Momentary Assessment (EMA) with a 15-working day data collection period using our self-developed STRAW smartphone application. Participants were asked repeatedly about their work-related stressors, work engagement, and recovery experiences. Fixed-effect model testing using random intercepts was applied to investigate within- and between-participant levels. RESULTS: Our sample consisted of 55 participants and 2710 item measurements were analysed. A significant positive association was found between job control and next-day work engagement (ß = 0.28, p < 0.001). Further, a significant negative association was found between job strain and next-day work engagement (ß = -0.32, p = 0.05). Furthermore, relaxation was negatively associated with work engagement (ß = -0.08, p = 0.03). CONCLUSIONS: This study confirmed previous results, such as higher job control being associated with higher work engagement and higher job strain predicting lower work engagement. An interesting result was the association of higher relaxation after the working day with a lower next-day work engagement. Further research investigating fluctuations in work-related stressors, work engagement, and recovery experiences is required.


Subject(s)
Occupational Stress , Work Engagement , Humans , Ecological Momentary Assessment , Job Satisfaction , Data Collection , Surveys and Questionnaires
3.
Front Public Health ; 11: 1073581, 2023.
Article in English | MEDLINE | ID: covidwho-2264429

ABSTRACT

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from the literature and expert knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is modular and easily adjustable to a real-world situation, it is trained and tested on data collected from almost all countries in the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of infections and intervention costs.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Algorithms , Machine Learning
4.
Geriatrics (Basel) ; 8(1)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225125

ABSTRACT

One major challenge during the COVID-19 pandemic was the limited accessibility to healthcare facilities, especially for the older population. The aim of the current study was the exploration of the extent to which the healthcare systems responded to the healthcare needs of the older people with or without cognitive impairment and their caregivers in the Adrion/Ionian region. Data were collected through e-questionnaires regarding the adequacy of the healthcare system and were anonymously administered to older individuals and stakeholder providers in the following countries: Slovenia, Italy (Calabria), Croatia, Bosnia and Herzegovina, Greece, Montenegro, and Serbia. Overall, 722 older people and 267 healthcare stakeholders participated in the study. During the COVID-19 pandemic, both healthcare stakeholders and the older population claimed that the healthcare needs of the older people and their caregivers increased dramatically in all countries, especially in Italy (Calabria), Croatia and BiH. According to our results, countries from the Adrion/Ionian regions faced significant challenges to adjust to the special needs of the older people during the COVID-19 pandemic, which was possibly due to limited accessibility opportunities to healthcare facilities. These results highlight the need for the development of alternative ways of providing medical assistance and supervision when in-person care is not possible.

5.
Int J Environ Res Public Health ; 18(13)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1282509

ABSTRACT

The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place. We collected the most diverse dataset of potentially relevant factors and infection metrics to date for this task. Using it, we show the importance of different factors and factor categories as determined by both statistical methods and machine learning (ML) feature selection (FS) approaches. Factors related to culture (e.g., individualism, openness), development, and travel proved the most important. A more thorough factor analysis was then made using a novel rule discovery algorithm. We also show how interconnected these factors are and caution against relying on ML analysis in isolation. Importantly, we explore potential pitfalls found in the methodology of similar work and demonstrate their impact on COVID-19 data analysis. Our best models using the decision tree classifier can predict the infection class with roughly 80% accuracy.


Subject(s)
COVID-19 , Algorithms , Humans , Machine Learning , Pandemics , SARS-CoV-2
6.
Cardiovasc Res ; 117(8): 1823-1840, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1174897

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as unexpected, affecting more than 105 million people worldwide as of 8 February 2020 and causing more than 2.3 million deaths according to the World Health Organization (WHO). Not only affecting the lungs but also provoking acute respiratory distress, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including cardiac and vascular cells. Hence a significant proportion of infected patients develop cardiac events, such as arrhythmias and heart failure. Patients with cardiovascular comorbidities are at highest risk of cardiac death. To face the pandemic and limit its burden, health authorities have launched several fast-track calls for research projects aiming to develop rapid strategies to combat the disease, as well as longer-term projects to prepare for the future. Biomarkers have the possibility to aid in clinical decision-making and tailoring healthcare in order to improve patient quality of life. The biomarker potential of circulating RNAs has been recognized in several disease conditions, including cardiovascular disease. RNA biomarkers may be useful in the current COVID-19 situation. The discovery, validation, and marketing of novel biomarkers, including RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative networks, involving both the academia and the industry. Here, members of the EU-CardioRNA COST Action CA17129 summarize the current knowledge about the strain that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers can aid to limit this burden. They present the benefits and challenges of the discovery of novel RNA biomarkers, the need for networking efforts, and the added value of artificial intelligence to achieve reliable advances.


Subject(s)
Artificial Intelligence/economics , Biomarkers/analysis , COVID-19/diagnosis , RNA/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular System/virology , Humans , Quality of Life , SARS-CoV-2/pathogenicity
7.
Sensors (Basel) ; 21(5)2021 Mar 06.
Article in English | MEDLINE | ID: covidwho-1129768

ABSTRACT

Contact-free sensors offer important advantages compared to traditional wearables. Radio-frequency sensors (e.g., radars) offer the means to monitor cardiorespiratory activity of people without compromising their privacy, however, only limited information can be obtained via movement, traditionally related to heart or breathing rate. We investigated whether five complex hemodynamics scenarios (resting, apnea simulation, Valsalva maneuver, tilt up and tilt down on a tilt table) can be classified directly from publicly available contact and radar input signals in an end-to-end deep learning approach. A series of robust k-fold cross-validation evaluation experiments were conducted in which neural network architectures and hyperparameters were optimized, and different data input modalities (contact, radar and fusion) and data types (time and frequency domain) were investigated. We achieved reasonably high accuracies of 88% for contact, 83% for radar and 88% for fusion of modalities. These results are valuable in showing large potential of radar sensing even for more complex scenarios going beyond just heart and breathing rate. Such contact-free sensing can be valuable for fast privacy-preserving hospital screenings and for cases where traditional werables are impossible to use.

SELECTION OF CITATIONS
SEARCH DETAIL